最新公告
您的当前位置: 网站首页 > 师资队伍 > 教学科研人员 > 教授 > 正文
任立勇
职称/职务: 教授
电话: 029-81530793
传真: 029-81530793
电子信箱: renliy@snnu.edu.cn
出生年月:
办公地点: 致知楼3104

 

先进光学成像研究团队欢迎您!

团队拟引进有偏振光学成像、计算光学成像、数字全息技术等相关研究工作背景的各层次青年才俊,欢迎应聘!欢迎申请师资博士后共同研究!欢迎热爱科学研究青年学子报考博士和硕士研究生!

 

教育背景:

2001/03-2004/02,中科院上海光机所,光学工程专业,博士研究生

1997/09-2000/06,西北大学,光学专业,硕士研究生

1991/09-1995/06,西北大学,光电子专业,学士

 

工作经历:

2019/03至今,陕西师范大学,物理学与信息技术学院,教授,博士生导师

2017/03-2019/03,中科院西安光机所,信息光子学研究室,研究员,主任
2013/11-2017/03, 中科院西安光机所,信息光子学研究室,研究员,副主任(主持工作)
2009/01-2013/10, 中科院西安光机所, 瞬态光学与光子技术国家重点实验室,研究员,博士生导师
2007/05-2009/04,电气通信大学(UEC),日本振兴学者(JSPS Fellow)
2004/03-2008/12,中科院西安光机所,瞬态光学与光子技术国家重点实验室,副研究员,硕士生导师
1995/07-2001/02,西北大学,物理系,讲师

 

学术及社会兼职:

2017/07至今, 中国光学学会全息与光信息处理专业委员会, 委员
2016/07至今, 中国光学学会高速摄影和光子学专业委员会, 委员
2013/12至今, 陕西省物理学会
2012至今,    国际光学工程学会高级会员(senior member of SPIE)
2012至今,    美国光学学会高级会员(senior member of OSA)

2011/06至今, 陕西省光学学会会员
2010/04至今, 中国光学学会高级会员(senior member of COS

研究领域:

偏振光学成像、计算光学成像、信息光子技术、微纳光子学、光纤光学

 

主持项目:

16、陕西师范大学基础研究重点(重大)项目培育专项,“超/高分辨3D显微偏振成像关键技术研究”,2020/01-2024/12,在研。

15、陕西师范大学科研启动基金:“先进光学成像技术研究2019/03至今,在研。

14、国家自然科学基金重点项目单光纤内窥无透镜成像技术与器件研究”(61535015) , 2016/01-2020/12, 在研。

13、国家自然科学基金面上项目基于微纳光纤与光子晶体慢光波导的低噪声窄线宽光纤激光技术研究(61275149)2013/01-2016/12,结题

12、国家自然科学基金面上项目单偏振单模光子晶体光纤的设计及其在可控光学延迟中的应用研究(60778020),2008/01-2010/12,已结题

11、国家高技术研究发展计划(863计划)项目XXXX宽波段XX成像技术研究,2013/07-2016/06,已结题。

10、 中科院“一三五”工程部署项目“实时彩色偏振成像相机样机研制”(S15-002),2014/07-2015/12,结题

9、中科院“西部之光”人才培养计划“联合学者”项目“特种光学微结构中慢光致可控光学延迟技术研究”2009/08-2012/12, 已结题。

8、日本学术振兴会科研奖励基金“All-optical and tunable slow-light delay line using stimulated scattering in photonic crystal fibers”,2007/05-2009/04, 结题

7、中科院XX创新基金项目“基于慢光效应的光控XXXXX真时延技术”2010/01-2011/12已结题。

6、XX电子元器件XX项目“XXX-X型光纤光栅传感器”,2009/01-2010/12,已结题。

5、陕西省人社厅留学人员择优重点项目“基于光速减慢技术的高精度可控光纤延迟线研究”,2010/01-2011/12,已结题。

4、留学回国人员科研启动项目“光纤受激布里渊散射慢光在可控光学延迟中的应用研究”,2010/01-2011/12已结题。 

3、企业委托研制的横向项目:“光纤激光器研制”,2012/05-2012/12,已结题。

2、瞬态光学与光子技术国家重点实验室自主研究课题:“适用于提高光纤陀螺灵敏度的慢光技术研究”,2012/01-2014/12已结题。

1、瞬态光学与光子技术国家重点实验室自主研究课题:“基于偏振成像实时去雾探测技术的理论与实验研究”,2013/05-2015/12已结题。

 

讲授课程:

3、《光电子技术》(2019秋季),研究生

2、《光电子技术与应用》(1997-2000),本科生

1、《原子光谱学导论》(1997-2000),本科生

 

获奖情况:

7、 中科院优秀导师奖,2018
6、 2017年《光学学报》“主编推荐奖”,2017
5、 2017年度JD科学技术进步奖, 二等奖,部委级, 2017
4、 2013年度陕西省科学技术奖,三等奖,省级,2013
3、 2013年度陕西省重点科技创新团队(超分辨光学成像),特等奖,省级,2013
2、 陕西省科学技术奖,一等奖,省级,2010

1、 陕西省自然科学优秀学术论文奖,二等奖,省级,2008


发表的学术论文:

153K. L. Ren, M. H. Cheng, L. Y. Ren, Y. H. Jiang, D. D. Han, Y. K Wang, J. Dong, J. H. Liu, L. Yang, and Z. Q. Xi, “Ultra-broadband conversion of OAM mode near the dispersion turning point in helical fiber gratings,” OSA Continuum, 3, 77-86 (2020).

152S. Sun, Y. P. Xu, L. Y. Ren, J. Y. Xu, T. X. Jia, L. Zhang, J. T. Xiao, B. C. Wang, W. X. Yang, S. B. Cheng, F. Chen, C. J. Ma, and F. Song, “Research on the gas refractive index sensing based on microfiber double-knot resonator with a parallel structure,Optik, 204, 164207 (2020). 

151Q. K. Xie, Y. R. Jiang, J. Liang, E. S. Qu, and L. Y. Ren, “Incoherent, non-invasive and non-scanning superoscillation-based microscope for super-resolution imaging,” Optics Communications, 463, 125445 (2020).

150B. C. Wang, L. Y. Ren, X. D. Kong, Y. P. Xu, K. L. Ren, W. X. Yang, S. B. Cheng, F. Chen, and F. Song, “Study on fabrication, spectrum and torsion sensing characteristics of microtapered long-period fiber gratings,” Optik, 204, 164445 (2020).

149J. Wang, J. J. Xue, E. S. Qu, and L. Y. Ren, “Doublet-waveplate polarization transceiver system for backscattering suppression in laser communication terminal,” Optics Communications, 466, 125621 (2020).

148J. Liang, X. B. Tian, X. Z. Tu, O. Spires, N. Brock, D. D. Wang, H. Wu, L. Y. Ren, B. L. Yao, S. Pau, and R. G. Liang, “Color full Stokes polarization fringe projection 3D imaging,” Optics and Lasers in Engineering, 130, 106088 (2020).

147J. Liang, H. J. Ju, L. Y. Ren, L. M. Yang, and R. G. Liang, “Generalized polarimetric dehazing method based on low-pass filtering in frequency domain,” Sensors, 20, 1729 (2020).

146张文飞任立勇邢飞张芳葛筱璐王国梅付圣贵“基于离散余弦变换金字塔分解的新型偏振光学去雾技术,”激光与光电子学进展,57061102 (2020).

145C. F. Xu, B. Zhuang, Z. X. Wu, and L. Y. Ren, “Single-fiber based endoscopic imaging: methods and characteristics,” Journal of Material Science and Technology Research, 6, 120-122 (2019).

144J. Liang, X. B. Tian, H. J. Ju, D. D. Wang, H. Wu, L. Y. Ren, and R. G. Liang, “Reconfigurable snapshot polarimetric imaging technique through distributed spectral-polarization filtering,” Optics Letters, 44, 4574-4577 (2019).

143H. Chen, Y. Geng, C. F. Xu, B. Zhuang, H. J. Ju, and L. Y. Ren, “Efficient light focusing through an MMF based on two-step phase shifting and parallel phase compensating,” Applied Optics, 58, 7552-7557 (2019).

142L. M. Yang, J. Liang, W. F. Zhang, H. J. Ju, L. Y. Ren, and X. P. Shao, “Underwater polarimetric imaging for visibility enhancement utilizing active unpolarized illumination,” Optics Communications, 438, 96-101 (2019).

141Q. K. Xie, Y. R. Jiang, J. Liang, E. S. Qu, and L. Y. Ren, “Hybrid phase-amplitude super-oscillation element for non-scanning optical super-resolution imaging,” Journal of the Optical Society of America A, 36, 196-201 (2019).

140H. J. Ju, L. Y. Ren, J. Liang, E. S. Qu, and Z. F. Bai, “Method for Mueller matrix acquisition based on a division-of-aperture simultaneous polarimetric imaging technique,” Journal of Quantitative Spectroscopy & Radiative Transfer, 225, 39-44 (2019).

139C. F. Xu, B. Zhuang, Y. Geng, H. Chen, L. Y. Ren, and Z. X. Wu, “A scanning-free wide-field single-fiber endoscopic image retrieval method based on optical transmission matrix,” Laser Physics, 29, 046202 (2019).

138W. F. Zhang, J. Liang, and L. Y. Ren, “Haze-removal polarimetric imaging schemes with the consideration of airlight's circular polarization effect,” Optik, 182, 1099-1105 (2019).

137X. D. Kong, L. Y. Ren, J. Liang, K. L. Ren, H. J. Ju, Y. P. Xu, and C. F. Xu, “A chiral long-period grating fabrication method based on axis-offset rotating optical fiber,” Optical and Quantum Electronics, 51, 124 (2019).

136Y. Geng, G. Z. Zhao, H. Chen, C. F. Xu, B. Zhuang, and L. Y. Ren, “High-speed focusing and scanning light through a multimode fiber based on binary amplitude-only modulation parallel coordinate algorithm,” Applied Physics B, 125, 83 (2019).

135J. Liang, H. J. Ju, L. Y. Ren, W. F. Zhang, L. M. Yang, Z. F. Bai, and R. G. Liang, “High resolution reconstruction of short-wave infrared polarimetric images using intensity information of visible images,” Applied Optics, 58, 4866-4870 (2019).

134Y. R. Jiang, Q. K. Xie, E. S. Qu, L. Y. Ren, J. Liang, and J. Wang, “A multi-wavelength multi-focus Fresnel solar concentrator with square uniform irradiance: design and analysis,” Applied Optics, 58, 5206-5212 (2019).

133Q. K. Xie, J. Wang, Y. R. Jiang, J. Liang, E. S. Qu, and L. Y. Ren, “Far-field super-oscillation imaging based on the super-oscillation elements and PSF feature extraction algorithm,” Journal of the Optical Society of America A, 35, 491-495 (2018).

132B. Zhuang, C. F. Xu, Y. Geng, G. Z. Zhao, H. Chen, Z. Q. He, Z. X. Wu, and L. Y. Ren, “Round-trip imaging through scattering media based on optical transmission matrix,” Chinese Optics Letters, 16, 041102 (2018).

131X. D. Kong, K. L. Ren, L. Y. Ren, J. Liang, H. J. Ju, and Y. P. Xu, “Tunable wavelength-selective coupler based on microtapered long period fiber gratings,” IEEE Photonics Technology Letters, 30, 821-824 (2018).

130B. Zhuang, C. F. Xu, Y. Geng, G. Z. Zhao, H. Chen, Z. Q. He, and L. Y. Ren, “An early study on imaging 3D objects hidden behind highly scattering media: round-trip optical transmission matrix method,” Applied Sciences, 8, 1036 (2018).

129L. M. Yang, J. Liang, W. F. Zhang, H. J. Ju, L. Y. Ren, J. Han, and E. S. Qu, “Underwater polarimetric imaging target enhancement technology based on unpolarized illumination,’’ Acta Optica Sinica, 38, 0611003 (2018). (中文)

128G. Z. Zhao, Y. Geng, H. Chen, C. F. Xu, B. Zhuang, Z. Q. He, B. W. Wu, and L. Y. Ren, “A method for focusing and scanning light through multimode fiber based on binary amplitude modulation DMD Technique,’’ Acta Optica Sinica, 38, 0911004-1-0911004-8 (2018). (中文)

127L. Y. Ren, B. Zhuang, G. Z. Zhao, C. F. Xu, Y. Geng, H. Chen, Z. Q. He, B. W. Hu, and Y. L. Li, “Multimode-fiber/scattering-medium computational optical endoscopic imaging based on digital wavefront modulation,” Proceedings of SPIE, CIOP100, 109640F-1-109640F-10 (2018). (Invited paper)

126W. F. Zhang, J. Liang, H. J. Ju, L. Y. Ren, E. S. Qu, and Z. X. Wu, “Study of visibility enhancement of hazy images based on dark channel prior in polarimetric imaging,” Optik, 130, 123-130 (2017).

125W. F. Zhang, J. Liang, L. Y. Ren, H. J. Ju, Z. F. Bai, and Z. X. Wu, “Fast polarimetric dehazing method for visibility enhancement in HSI colour space,” Journal of Optics, 19, 095606 (2017).

124C. J. Ma, L. Y. Ren, W. G. Guo, H. W. Fu, Y. P. Xu, Y. G. Liu, and J. Wen, “Numerical investigation of a microfiber-plane-grating composite optical waveguide for gas refractive index sensing,” Applied Optics, 56, 3984-3988 (2017).

123W. F. Zhang, J. Liang, L. Y. Ren, H. J. Ju, E. S. Qu, Z. F. Bai, Y. Tang, and Z. X. Wu, “Real-time image haze removal using an aperture-division polarimetric camera,” Applied Optics, 56, 942-947 (2017).

122K. L. Ren, L. Y. Ren, Y. L. Wang, X. Lin, J. Liang, Y. P. Xu, and H. J. Ju, “Theoretical study on core-mode to radiation-mode coupling in chiral fiber long-period gratings,” Optics and Laser Technology, 92, 150-155 (2017).

121X. D. Kong, K. L. Ren, L. Y. Ren, J. Liang, and H. J. Ju, “Chiral long-period gratings: fabrication, high-sensitive torsion sensing and tunable single-band filtering,” Applied Optics, 56, 4702-4707 (2017).

120K. L. Ren, L. Y. Ren, J. Liang, X. D. Kong, H. J. Ju, and Z. X. Wu, “Highly strain and bending sensitive microtapered long-period fiber gratings,” IEEE Photonics Technology Letters, 29, 1085-1088 (2017).

119K. L. Ren, L. Y. Ren, J. Liang, X. D. Kong, H. J. Ju, and Z. X. Wu, “Online and efficient fabrication of helical long-period fiber gratings,” IEEE Photonics Technology Letters, 29, 1175-1178 (2017).

118Y. P. Xu, L. Y. Ren, C. J. Ma, X. D. Kong, K. L. Ren, and F. Song, “Stable and uniform multiwavelength erbium-doped fiber laser based on a microfiber knot resonator with a Sagnac loop reflector,” Journal of Optics (Springer), 1, 1-5 (2017).

117H. J. Ju, J. Liang, W. F. Zhang, Z. F. Bai, L. Y. Ren, and E. S. Qu, “Study on simultaneous, real-time, chromatic polarimetric imaging technology with full-polarization-state detection,” Journal of Infrared Millimeter Waves, 36, 744-748 (2017).

116J. Liang, H. J. Ju, W. F. Zhang, L. Y. Ren, and E. S. Qu, “Review of optical polarimetric dehazing technique,” Acta Optica Sinica, 37, 0400001-1-0400001-13 (2017). (中文)

115Z. Q. He, L. Y. Ren, B. Zhuang, C. F. Xu, and L. B. Zhou, “Single optical fiber imaging technology,” Laser & Optoelectronics Progress, 54, 030005-1-030005-9 (2017). (中文)

114Y. P. Xu, L. Y. Ren, C. J. Ma, X. D. Kong, and K. L. Ren, “Demonstration of a stable and uniform single-wavelength erbium-doped fiber laser based on microfiber knot resonator,” Optical Engineering, 55, 126111 (2016).

113C. J. Ma, L. Y. Ren, W. G. Guo, H. W. Fu, Y. P. Xu, Y. G. Liu, and X. Z. Zhang, “Wideband slow-light propagation with no-distortion in a nanofiber-plane grating composite waveguide,” Optical Engineering, 55, 066120 (2016).

112J. Liang, W. F. Zhang, L. Y. Ren, H. J. Ju, and E. S. Qu, “Polarimetric dehazing method for visibility improvement based on visible and infrared image fusion,” Applied Optics, 55, 8221-8226 (2016).

111K. L. Ren, L. Y. Ren, J. Liang, X. D. Kong, H. J. Ju, Y. P. Xu, and Z. X. Wu, “Online fabrication scheme of helical long-period fiber grating for liquid-level sensing,” Applied Optics, 55, 9675-9679 (2016).

110Y. D. WangX. T. GanC. Y. Zhao, L. Fang, D. Mao, Y. P. Xu, F. L. Zhang, T. L. Xi, L. Y. Ren, and J. L. Zhao, “All-optical control of microfiber resonator by graphene’s photothermal effect,” Applied Physics Letters, 108, 171905 (2016).

109Y. P. Xu, L. Y. Ren, C. J. Ma, X. D. Kong, and K. L. Ren, “Slow light and fast light in microfiber double-knot resonator with a parallel structure,” Applied Optics, 55, 8612-8617 (2016).

108W. F. Zhang, J. Liang, H. J. Ju, L. Y. Ren, E. S. Qu, and Z. X. Wu, “A robust haze-removal scheme in polarimetric dehazing imaging based on automatic identification of sky region,” Optics & Laser Technology, 86, 145-151 (2016).

107L. Y. Ren, Y. P. Xu, Y. L. Wang, C. J. Ma, X. D. Kong, J. Liang, H. J. Ju, K. L. Ren, X. Lin, and X. J. Li, “Optical microfiber knot resonator (MKR) and its slow-light performance,” Journal of Physics: Conferences Series, 680, 012032 (2016).

106L. Y. Ren, E. S. Qu, J. Liang, H. J. Ju, W. F. Zhang, Z. F. Bai, and Y. Tang, “Real-time chromatic polarimetric imaging camera based on aperture-division full-polarization simultaneous detection,” OE Product & News, 10, 53-56 (2016). (中文)

105J. Liang, L. Y. Ren, H. J. Ju, W. F. Zhang, and E. S. Qu, “Polarimetric dehazing method for dense haze removal based on distribution analysis of angle of polarization,” Optics Express, 23, 26146-26157 (2015).

104X. J. Li, L. Y. Ren, X. Lin, H. J. Ju, N. N. Chen, J. Liang, K. L. Ren, and Y. P. Xu, “Improved multiple-wavelength Brillouin–Raman fiber laser assisted by four-wave mixing with a micro-air cavity,” Applied Optics, 54, 9919-9924 (2015).

103Y. P. Xu, L. Y. Ren, J. Liang, C. J. Ma, Y. L. Wang, X. D. Kong, and X. Lin, “Wideband slow light in microfiber double-knot resonator with a parallel structure,” Journal of Applied Physics, 118, 073105 (2015).

102C. J. Ma, L. Y. Ren, Y. P. Xu, Y. L. Wang, H. Zhou, F. Wei, and J. Wen, “Theoretical and experimental study of structural slow light in a microfiber coil resonator,” Applied Optics, 54, 5619-5623 (2015).

101Y. P. Xu, L. Y. Ren, Y. L. Wang, X. D. Kong, J. Liang, K. L. Ren, and X. Lin, “Enhanced slow light in microfiber double-knot resonator with a Sagnac loop reflector,” Optics Communications, 350, 148-153 (2015).

100Y. P. Xu, L. Y. Ren, Y. L. Wang, X. D. Kong, J. Liang, H. J. Ju, and D. Qiao, “Slow-light effect in microfiber double-knot resonator with a parallel structure,” Acta Photonica Sinica, 44, 0506002-1-0506002-6 (2015). (中文)

99Y. P. Xu, L. Y. Ren, C. J. Ma, Y. L. Wang, X. D. Kong, J. Liang, and H. J. Ju, “Theoretical and experimental study on spectral characteristics of microfiber double-knot resonator with different structures,” Acta Photonica Sinica, 44, 0406001-1-0406001-7 (2015). (中文)

98X. C. Du, Z. Q. He, X. Lin, L. B. Zhou, B. W. Hu, B. K. Luo, X. Y. Guo, D. P. Kong, L. Y. Ren, and Y. L. Li, “Low-cost robust polymer optical fiber temperature sensor based on FIR method for in situ measurement,” Acta Photonica Sinica, 44, 0406003-1-0406003-7 (2015). (中文)

97X. C. Du, L. B. Zhou, Z. Q. He, F. Liu, X. Lin, B. W. Hu, X. Y. Guo, B. K. Luo, L. Y. Ren, and Y. L. Li, “A fiber-optic temperature sensor based on dual fluorescence by using FIR method”, Chinese Journal of Lasers, 42, 0805002-1-0805002-9 (2015).

96Y. D. Dai, E. S. Qu, and L. Y. Ren, “Rapid modeling method of LED free-form surface lens based on Scheme language,” Infrared and Laser Engineering, 44, 2690-2695 (2015).

95Y. L. Wang, M. H. Kang, L. Y. Ren, and K. L. Ren, “Design of spun high-birefringent fiber for fiber optic current sensor,” Infrared and Laser Engineering, 44, 170-175 (2015). (中文)

94J. Liang, L. Y. Ren, H. J. Ju, E. S. Qu, and Y. L. Wang, “Visibility enhancement of hazy images based on a universal polarimetric imaging method,” Journal of Applied Physics, 116, 173107 (2014).

93X. Lin, L. Y. Ren, Y. P. Xu, N. N. Chen, H. J. Ju, J. Liang, Z. Q. He, E. S. Qu, B. W. Hu, and Y. L. Li, “Low-cost multipoint liquid-level sensor with plastic optical fiber,” IEEE Photonics Technology Letters, 26, 1613-1616 (2014).

92Y. P. Xu, L. Y. Ren, C. J. Ma, and J. Liang, “Theoretical study on slow light in different structures of optical microfiber knot resonators (OMKRs),” Optik, 125, 2856-2861 (2014).

91J. Liang, L. Y. Ren, E. S. Qu, B. L. Hu, and Y. L. Wang, “Method for enhancing visibility of hazy images based on polarimetric imaging,” Photonics Research, 2, 38-44 (2014).

90Y. P. Xu, L. Y. Ren, J. Liang, C. J. Ma, Y. L. Wang, and N. N. Chen, and E. S. Qu, “A simple, polymer-microfiber-assisted approach to fabricating the silica microfiber knot resonator,” Optics Communications, 321, 157-161 (2014).

89C. J. Ma, L. Y. Ren, Y. P. Xu, Y. L. Wang, J. Liang, and E. S. Qu, “Design and fabrication of tapered microfiber waveguide with good optical and mechanical performance,” Journal of Modern Optics, 61, 683-687 (2014).

88Y. P. Xu, L. Y. Ren, C. J. Ma, Y. L. Wang, J. Liang, and E. S. Qu, “Wide-bandwidth and zero-dispersion slow light in MKRs with two-ring parallel connection structure based on an analogue of electromagnetically induce transparency,” Journal of Modern Optics, 61, 1109-1114 (2014).

87M. H. Kang, Y. L. Wang, L. Y. Ren, J. T. Xu, J. Liang, and E. S. Qu, “Design of vibration-insensitive Sagnac fiber-optic current sensors using spun high-birefringence fibers,” Journal of Modern Optics, 61, 1120-1126 (2014).

86Y. L. Wang, L. Y. Ren, J. T. Xu, M. H. Kang, K. L. Ren, and N. B. Shi. “The compensation of Y waveguide temperature drifts in FOG with the thermal resistor,” Advanced Materials Research, 924, 336-342 (2014).

85Y. D. Dai, E. S. Qu, L. Y. Ren, X. C. Du, and H. J. Ju, “The design of freeform surface Fresnel lens used for LED uniform illumination,” Applied Mechanics and Materials, 571/572, 976-979 (2014).

84H. J. Ju, L. Y. Ren, X. Lin, J. Liang, and C. J. Ma, “Wide-range continuously-tunable slow-light delay line based on stimulated Brillouin scattering,” IEEE Photonics Technology Letters, 25, 1920-1923 (2013).

83N. N. Chen, J. Liang, and L. Y. Ren, “High-birefringence, low-loss porous fiber for single-mode terahertz-wave guidance,” Applied Optics, 52, 5297-5302 (2013).

82X. Lin, L. Y. Ren, and J. Liang, “Nondestructive scheme for measuring the attenuation coefficient of polymer optical fiber,” Optics Letters, 38, 528-530 (2013).

81X. Lin, L. Y. Ren, E. S. Qu, J. Liang, and H. J. Ju, “Theoretical and experimental study on nonintrusive light injection via cladding in plastic optical fibers”, Journal of Lightwave Technology, 31, 359-365 (2013).

80J. Liang, L. Y. Ren, N. N. Chen, and C. H. Zhou, “Broadband, low-loss, dispersion flattened porous-core photonic bandgap fiber for terahertz (THz)-wave propagation,” Optics Communications, 295, 257-261 (2013).

79H. J. Ju, L. Y. Ren, J. Liang, and C. J. Ma, “Stability-improved slow light in polarization-maintaining fiber based on polarization-managed stimulated Brillouin scattering,” Journal of Optics, 15, 035404, (2013).

78M. J. Yu, J. Liang, L. Y. Ren, W. J. Kong, Y. Wan, “Design and optimization of slow light photonic bandgap fiber,” Acta Optica Sinica, 33, 0406005-1-0406005-4 (2013). (中文)

77H. J. Ju, L. Y. Ren, J. Liang, C. J. Ma, X. Lin, “Stability improvement of SBS slow light in optical fibers based on polarization management technique,” Laser and Optoelectrincs Progress, 50, 030603-1-030603-4 (2013). (中文)

76C. J. Ma, L. Y. Ren, E. S. Qu, F. Tang, and Q. Liang, “Modeling and testing of static pressure within an optical fiber cable spool using distributed fiber Bragg gratings,” Optics Communications, 285, 4949-4953 (2012).

75C. J. Ma, L. Y. Ren, and Y. P. Xu, “Slow-light element for tunable time delay based on optical microcoil resonator,” Applied Optics, 51, 6295-6300 (2012).

74M. J. Yun, Y. Wang, J. Liang, F. Xia, M. L. Liu, and L. Y. Ren, “Multi-channel biosensor based on photonic crystal waveguide and microcavities,” Optik, 123, 1920-1922 (2012).

73C. J. Ma, L. Y. Ren, F. Tang, E. S. Qu, J. T. Xu, Q. Liang, J. Wang, X. Han, “Study on static pressure of fiber cable spool based on distributed fiber Bragg grating sensing technology,” Acta Physica Sinica, 61, 054702-1-054702-6 (2012). (中文)

72Y. Liu, L. Y. Ren, M. L. Hu, J. Liang, X. Han, and C. J. Ma, “Characteristic measurements of fiber Brillouin scattering using fiber Bragg grating based microwave-sweeping single sideband modulation,” Chinese Journal of Lasers39, 0105002-1-0105002-5 (2012). (中文)

71L. Y. Ren, J. Liang, Yu Liu, H. J. Ju, M. J. Yun, C. J. Ma, X. Han, X. Lin, and Y. Tomita, “Slow-light in photonic crystal waveguides/fibers: dispersion tailoring schemes for obtaining a high group index with wide band and low GVD,” Proceedings of SPIE, 8273, 82730L-1-82730L-12 (2012). (Invited paper)

70C. J. Ma, L. Y. Ren, E, S. Qu, F. Tang, and Q. Liang, “Modeling and testing of static pressure within an optical fiber cable spool using distributed fiber Bragg gratings,” 2012 Beijing International Forum on Science and Technology, 68-77 (2012). (Invited paper)

69L. Y. Ren, J. Liang, and M. J. Yun, “Hollow-core photonic bandgap fiber with microfluid-infiltrated air holes for slow-light propagation,” Proceedings of SPIE, 8497, 849710-1-849710-7 (2012).

68L. Y. Ren, C. J. Ma, E. S. Qu, F. Tang, and X. Han, “Analysis and study of static pressure distribution in an optical cable spool using distributed fiber Bragg gratings,” Proceedings of SPIE, 8351, 835119-1-835119-8, (2012).

67J. Liang, L. Y. Ren, M. J. Yun, and X, J. Wang, “Wideband slow light with ultralow dispersion in a W1 photonic crystal waveguide,” Applied Optics, 50, G98-G103 (2011).

66J. Liang, L. Y. Ren, M. J. Yun, X. Han, and X. J. Wang, “Wideband ultraflat slow light with large group index in a W1 photonic crystal waveguide,” Journal of Applied Physics, 110, 063103-1-063103-6 (2011).

65Y. N. Zhang, L. Y. Ren, Y. K. Gong, X. H. Li, L. R. Wang, and C. D. Sun, “Design and optimization of highly nonlinear low-dispersion crystal fiber with high birefringence for four-wave mixing,” Applied Optics, 49, 3208-3214 (2010).

64J. Wang, F. Tang, L. Y. Ren, J. T. Xu, and M. L. Hu, “Vibration demodulation using fiber grating based on tunable Gaussian filter,” Journal of Applied Optics, 31, 993-999 (2010). (中文)

63Z. L. Duan, L. Y. Ren, Y. N. Zhang, H. Y. Wang, B. L. Yao, and W. Zhao, “Theoretical and experimental study of polarization characteristics of polarization maintaining fiber based on wavelength-sweeping modulation,” Microwave and Optical Technology Letters, 52, 1466-1469 (2010).

62L. Y. RenY. L. Yang, W. Zhao, and Y. Tomita, “Spatial and temporal evolution of transient stimulated-Brillouin-scattering slow-light pulse in an optical fiber,” Proceedings of SPIE, 7612, 761207-1-761207-8 (2010).

61L. Y. Ren and Y. Tomita, “Transient and nonlinear analysis of slow-light pulse propagation in an optical fiber via stimulated Brillouin scattering,” Journal of the Optical Society of America B, 26, 1281-1288 (2009).

60S. H. Wang, L. Y. Ren, and Y. Liu, “Theoretical study on stimulated-Brillouin-scattering gain-spectrum broadening and pulse-distortion reduction of slow-light propagation using double broadband pump in optical fibers,” Acta Physica Sinica, 58, 3943-3948 (2009). (中文)

59L. Y. Ren and Y. Tomita, “SBS-based slow light in optical fibers: optimum design considerations for undistorted slow-light signal propagation in steady-state and transient regimes,” Proceedings of SPIE, 7226, 722605-1-722605-14 (2009). (Invited paper)

58L. Y. Ren and Y. Tomita, “Reducing group-velocity-dispersion-dependent broadening of stimulated Brillouin scattering slow light in an optical fiber by use of a single pump laser,” Journal of the Optical Society of America B, 25, 741-746 (2008).

57S. H. Wang, L. Y. Ren, Y. Liu, and Y. Tomita, “Zero-broadening SBS slow light propagation in an optical fiber using two broadband pump beams,” Optics Express, 16, 8067-8076 (2008).

56Y. Liu, L. Y. Ren, and S. H. Wang, “Theoretical study of stimulated Brillouin scattering slow light and pulse-broadening reduction using double broadband pump in optical fibers,” Acta Optica Sinica, 28, 2077-2082 (2008). (中文)

55L. Y. Ren and Y. Tomita, “Distortion management of SBS slow light in a single-mode optical fiber by optimization of broadband SBS gain spectrum,” Proceedings of SPIE, 6994, 69940G-1-69940G-10 (2008).

54L. Y. Ren, H. Y. Wang, Y. N. Zhang, B. L. Yao, and W. Zhao, “Theoretical design of single polarization single mode microstructured polymer optical fibers,” Chinese Physics Letters, 24, 1298-1301 (2007).

53L. Y. Ren, H. Y. Wang, B. L. Yao, Y. L. Wang, and M. Lei, “Real-time non-destructive measurement of diffraction characteristic of dynamic volume holograms based on phase conjugate,” Acta Photonica Sinica, 36, 1018-1022 (2007). (中文)

52Y. N. Zhang, R. C. Miao, L. Y. Ren, L. L. Wang, and W. Zhao, “High birefringence polymer photonic crystal fiber with elliptical core non-hexangular symmetry,” Acta Photonica Sinica, 36, 1035-1039 (2007). (中文)

51Y. N. Zhang, R. C. Miao, L. Y. Ren, H. Y. Wang, L. L. Wang, and W. Zhao, “Polarization properties of elliptical core non-hexagonal symmetry polymer photonic crystal fiber,” Chinese Physics, 16, 1719-1724 (2007).

50Y. N. Zhang, L. Y. Ren, Kang Li, H. Y. Wang, W. Zhao, L. L. Wang, R. C. Miao, M. C. J. Large, and M. A. Eijkelenborg, “Guiding mode in elliptical core microstructured polymer optical fiber,” Chinese Optics Letters, 5, 194-196 (2007).

49H. Y. Wang, L. Y. Ren, Y. N. Zhang, B. L. Yao, and W. Zhao, “Design of single-polarization single-mode micro-structured polymer optical fiber,” Chinese Journal of Lasers, 34, 684-687 (2007). (中文)

48H. Y. Wang, L. Y. Ren, Y. N. Zhang, B. L. Yao, and W. Zhao, “Polarization properties measurement of polarization maintaining fiber based on wavelength-sweeping modulation,” Journal of Optoelectronics · Laser, 18, 1336-1339 (2007). (中文)

47N. Menke, B. L. Yao, Y. L. Wang, Y. Zheng, M. Lei, L. Y. Ren, G. F. Chen, Y. Chen, M. G. Fan, and T. K. Li, “Optical image processing using the photoinduced anisotropy of pyrrylfulgide,” Journal of the Optical Society of America A, 23, 267-271 (2006).

46Y. N. Zhang, Kang Li, L. L. Wang, L. Y. Ren, W. Zhao, R. C. Miao, M. C. J. Large, and M. A. Eijkelenborg, “Casting preforms for microstructured polymer optical fibre fabrication,” Optics Express, 14, 5541-5547 (2006).

45Y. N. Zhang, L. L. Wang, L. Y. Ren, T. H. Li, X. Z. Wang, W. Zhao, and R. C. Miao. “Fabrication of microstructured polymer optical fiber preform,” Proceedings of SPIE, 6149, 61491Y-1-61491Y-6 (2006).

44Y. N. Zhang, L. L. Wang, X. Z. Wang, L. Y. Ren, W. Zhao, and R. C. Miao, “Chemistry fabrication of polymer photonic crystal fibers with high polarization maintaining properties,” Acta Photonica Sinica, 35, 1349-1353 (2006). (中文)

43Y. N. Zhang, L. Y. Ren, L. L. Wang, and R. C. Miao, “Progress in the study of high birefringence polarization maintained photonic crystal fibers,” Chinese Journal of Quantum Electronics, 23, 577-582 (2006). (中文)

42Z. W. Ren, B. L. Yao, N. Menke, Y. L. Wang, M. Lei, L. Y. Ren, and G. F. Chen, “Experimental study on angle multiplexing and polarization multiplexing holographic recording with Bacteriorhodopsin film,” Acta Optica Sinica, 26, 822-826 (2006). (中文)

41Y. L. Wang, B. L. Yao, N. Menke, Z. W. Ren, M. Lei, and L. Y. Ren, “Experimental and theoretical studies on auxiliary violet light increasing the diffraction efficiency of holographic gratings in bacteriorhodopsin film,” Acta Physica Sinica, 55, 5200-5206 (2006). (中文)

40B. L. Yao, Y. L. Wang, N. Menke, M. Lei, L. Y. Ren, and S. Z. Pu, “Polarization holograms recording in photochromic diarylethenes polymeric film,” Proceedings of SPIE, 6343, 63432Z-1-63432Z-6 (2006).

39Q. M. Dong, L. R. Liu, D. A. Liu, C. X. Dai, and L. Y. Ren, “Optimal dopant composition ratio during nonvolatile holographic recording in LiNbO3:Cu:Ce crystals,” Chinese Journal of Lasers, 32, 248-251 (2005). (中文)

38B. L. Yao, M. Lei, L. Y. Ren, N. Menke, Y. L. Wang, T. Fischer, and N. Hampp, “Polarization multiplexed write-once-read-many optical data storage in bacteriorhodopsin films,” Optics Letters, 30, 3060-3062 (2005).

37Q. J. Peng, G. L. Wang, Y. Bo, X. J. Guo, A. C. Geng, Z. Y. Xu, L. Y. Ren, Y. N. Zhang, Y. S. Wang, W. Zhao, and L. L. Wang “Highly efficient tunable tapered-polymer-fiber lasers,’’ Applied Physics Letters, 87, 251101-1-251101-3 (2005).

36B. L. Yao, Y. L. Wang, N. Menke, M. Lei, Y. Zheng, L. Y. Ren, G. F. Chen, Y. Chen, and M. G. Fan, “Optical properties and applications of photochromic fulgides,” Molecular Crystals and Liquid Crystals, 430, 211-219 (2005).

35B. L. Yao, Y. L. Wang, N. Menke, M. Lei, L. Y. Ren, and Z. W. Ren, “Properties and applications of bacteriorhodopsin-films as dynamic holographic recording media,” Trends in Optics and Photonics (TOPS), 99, 300-306 (2005).

34L. Y. Ren, B. L. Yao, N. Menke, L. L. Wang, and Y. F. Kong, “Dynamic characteristics of holographic recording and fixing in doubly doped LiNbO3 crystal,” Trends in Optics and Photonics (TOPS), 99, 398-404 (2005).

33L. Y. Ren, B. L. Yao, M. Lei, Y. L. Wang, L. R. Liu, D. A. Liu, Q. M. Dong, and C. X. Dai, “Optimal switching of nonvolatile holographic recording in LiNbO3:Ce:Cu crystal,” Acta Photonica Sinica, 34(Z1), 81-84 (2005). (中文)

32L. Y. Ren, B. L. Yao, L. L. Wang, Y. F. Kong, N. Menke, Z. W. Ren, and M. Lei, “Real-time non-destructive testing of dynamic holograms in doubly-doped LiNbO3 crystals using phase-conjugate technique,” Proceedings of SPIE, 5966, 59660V-159660V-4 (2005).

31Q. L. Qu, Y. Wang, L. Y. Ren, J. S. Wei, and F. X. Gan, “Gaussian diffraction model for Sb thin films in super-resolution near-field structure,” Proceedings of SPIE, 5966, 59661A-1-59661A-5 (2005).

30L. L. Wang, Y. N. Zhang, L. Y. Ren, X. Z. Wang, and W. Zhao, “A new approach to mass fabrication technology of microstructured polymer optical fiber preform,” Chinese Optics Letters, 3, s94-s97 (2005).

29L. Y. Ren, L. R. Liu, D. A. Liu, J. F. Zu, and Z. Luan, “Optimal switching from recording to fixing for high diffraction from a LiNbO3:Ce:Cu photorefractive nonvolatile hologram,” Optics Letters, 29, 186-188 (2004).

28L. Y. Ren, L. R. Liu, D. A. Liu, and B. L. Yao, “Dynamic characteristics of holographic recording and fixing in LiNbO3:Ce:Cu crystal,” Optics Communications, 238, 363-369 (2004).

27L. Y. Ren, L. R. Liu, D. A. Liu, B. L. Yao, N. Menkea, Z. W. Ren, and Y. F. Kong, “Self-enhancement effect and optimal switching scheme for high fixed diffraction efficiency in LiNbO3:Ce:Cu crystals,” Proceedings of SPIE, 5636, 329-333 (2004).

26L. Y. Ren, L. R. Liu, and D. A. Liu, “Effect of Microcosmic optical parameters of doubly doped LiNbO3 on diffraction efficiency,” Acta Optica Sinica, 24, 941-946 (2004). (中文)

25L. R. Liu, L. Y. Ren, D. A. Liu, Z. Luan, and L. Y. Wan, “Optimal switching time for recording and fixing phases during nonvolatile holographic storage in doubly doped LiNbO3 crystals,” Proceedings of SPIE, 5560, 228-234 (2004) (Invited paper)

24Q. M. Dong, L. R. Liu, D. A. Liu, C. X. Dai, and L. Y. Ren, “Effect of dopant composition ratio on nonvolatile holographic recording in LiNbO3:Cu:Ce crystals,” Applied Optics, 43, 5016-5022 (2004).

23D. A. Liu, L. R. Liu, L. Y. Ren, Z. Luan, and Y. Zhou, “Material optimization for low scattering noise during nonvolatile holographic recording in doubly doped LiNbO3 crystals,” Chinese Optics Letters, 2, 630-633 (2004).

22L. Y. Ren, L. R. Liu, D. A. Liu, J. F. Zu, and Z. Luan, “Recording and fixing dynamics of nonvolatile photorefractive holograms in LiNbO3:Fe:Mn crystals,” Journal of the Optical Society of America B, 20, 2162-2173 (2003).

21L. Y. Ren, L. R. Liu, D. A. Liu, C. H. Zhou, and G. G. Li, “Experimental and theoretical study of non-volatile photorefractive holograms in doubly doped LiNbO3:Fe:Cu,” Optical Materials, 23/1-2, 261-267 (2003).

20L. Y. Ren, L. R. Liu, D. A. Liu, and Z. Luan, “Time-space dynamics of holographic recording and fixing in LiNbO3 :Fe:Mn crystal,” Proceedings of SPIE, 5206, 255-263 (2003).

19B. L. Yao, L. Y. Ren, and X. Hou, “Z-scan theory based on a diffraction model,” Journal of the Optical Society of America B, 20, 1290-1294 (2003).

18L. Y. Ren, B. L. Yao, X. Hou, L. R. Liu, and C. H. Zhou, “Analyses and computations of asymmetric Z-scan for large phase shift from diffraction theory,” Chinese Optics Letters, 1, 111-113 (2003).

17L. Y. Ren, L. R. Liu, D. A. Liu, and Z. Luan, “Time-space diffraction properties of volume holographic grating in doubly doped LiNbO3:Fe:Mn,” Acta Physica Sinica, 52, 2788-2794 (2003). (中文)

16D. A. Liu, L. R. Liu, L. Y. Ren, Z. Luan, and J. F. Zu, “Material optimization of doubly doped LiNbO3 crystals for high diffraction efficiency and low scattering noise in nonvolatile holographic storage,” Proceedings of SPIE, 5206, 311-319 (2003).

15L. R. Liu, D. A. Liu, L. Y. Ren, Z. Luan, Y. Zhou, J. F. Zu, “3-D photorefractive integration of optical systems by local nonvolatile holograms in doubly doped LiNbO3 crystals,” Trends in Optics and Photonics Series, 87, 626-633 (2003).

14L. Y. Ren, D. A. Liu, L. R. Liu, and C. H. Zhou, “Nonvolatile photorefractive holograms in doubly doped LiNbO3: uniform theory and verification,” Proceedings of SPIE, 4803, 53-64 (2002). (Invited paper)

13L. Y. Ren, L. R. Liu, D. A. Liu, and C. H. Zhou, “The optimization of dynamic holographic storage in photochromic LiNbO3:Fe:Mn crystals,” Proceedings of SPIE, 4924, 153-161 (2002).

12B. L. Yao, L. Y. Ren, X. Hou, M. Q. Wang, and W. H. Yi, “Measurement of nonlinear optical response time of a π-conjugated polypyrrole derivative,” Chinese Journal of Lasers, 29, 65-68 (2002). (中文)

11B. L. Yao, L. Y. Ren, and X. Hou, “A new Z-scan theory based on diffraction model,” Acta Optica Sinica, 22, 19-23 (2002). (中文)

10L. R. Liu, D. A. Liu, L. Y. Ren, C. H. Zhou, and Y. W. Liu, “Nonvolatile holographic gratings in doubly doped LiNbO3,” The Optical Society of America’s 2002 Diffractive Optics and Micro-Optics Conference, DTUA4, 80-82 (2002).

9D. A. Liu, L. R. Liu, C. H. Zhou, L. Y. Ren, and G. G. Li, “Nonvolatile holograms in LiNbO3:Fe:Cu by use of the bleaching effect,” Applied Optics, 41, 6809-6814 (2002).

8D. A. Liu, L. R. Liu, C. H. Zhou, L. Y. Ren, and G. G. Li, “Bleaching effect in LiNbO3:Fe:Cu crystals and its application for nonvolatile holographic storage,” Proceedings of SPIE, 4803, 156-163 (2002).

7D. A. Liu, L. R. Liu, C. H. Zhou, L. Y. Ren, and G. G. Li, “Bleaching effect and nonvolatile holographic storage in doubly doped LiNbO3:Fe:Cu crystals,” Chinese Science Bulletin, 47, 1704-1707 (2002).

6L. Y. Ren, B. L. Yao, X. Hou, W. H. Yi, and M. Q. Wang, “Laser-induced diffraction effect from polypyrrylarylenemthine solutions,” Chinese Journal of Lasers, 28, 333-336 (2001). (中文)

5B. L. Yao, L. Y. Ren, X. Hou, W. H. Yi, and M. Q. Wang, “Diffraction behavior of polypyrrylarylenemethine/polyvinyl film to Gaussian beam,” Acta Optica Sinica, 21, 1139-1143 (2001). (中文)

4L. Y. Ren, B. L. Yao, X. Hou, W. H. Yi, and M. Q. Wang, “Experiment and theory on diffraction from laser-induce phase-hole in polymer film,” Acta Physica Sinica, 49, 1973-1977 (2000). (中文)

3L. Y. Ren, B. L. Yao, D. L. Xu, X. Hou, and M. X. Wang, “Laser induced self-diffraction from polyaniline/NMP solution,” Acta Photonica Sinica, 29, 506-509 (2000). (中文)

2W. H. Yi, X. Yao, M. Q. Wang, L. Y. Ren, and B. L. Yao, “Nonlinear optical properties of novel polypyrrolederavitive,” Journal of Xi’an Jiaotong University, 34, 15-22 (2000). (中文)

1L. Y. Ren, W. J. Chen, and J. C. Shui, “Microhole drilling with polarized pulse laser radiation,” Journal of Optoelectronics · Laser, 10, 473-479 (1999). (中文)

 

申请/授权专利(近五年):

11、一种单模单光纤无扫描内窥成像系统及方法,发明,2019, 申请号:2019 1 0104120.9

10、基于自适应并行坐标算法的多模光纤出射光斑聚焦方法与系统,发明,2019, 申请号:2019 1 0142258.8

9、 一种穆勒矩阵测量系统及方法, 发明, 2018, 专利号: CN108918425A

8、一种菲涅尔聚光透镜及其制作方法, 发明, 2018, 专利号: 2018 1 1602652.7

7、一种单光纤内窥成像系统及其成像方法, 发明, 2018, 专利号: 2018 1 1543790.2

6、一种实现多模光纤出射光斑逐点聚焦的方法与系统, 发明, 2018, 专利号: 2018 1 1521808X

5、一种分孔径共焦面全偏振态同时探测的偏振成像系统及方法, 发明, 2017, 专利号: ZL 2015 1 0777564.0

4、一种分孔径共焦面全偏振态同时探测的偏振成像系统, 实用新型, 2016, 专利号: ZL 2015 2 0906066.7

3、一种结合暗通道先验原理的偏振成像去雾方法, 发明, 2015, 专利号: 2015 1 0405375.0

2、一种单孔径分光超衍射成像系统及其方法, 发明, 2015, 专利号: ZL 2015 2 0771605.0

1、一种基于偏振成像技术的去雾方法, 发明, 2014, 专利号: ZL 2014 1 8004203.9

 

学术会议报告(2002年以来):

45巨海娟,任立勇,梁健,屈恩世,基于穆勒矩阵的水下目标偏振成像探测技术, 2019年全国光学学会学术大会,合肥,2019.8.9-12

44任立勇,偏振相机及其去海雾/去水下散射成像应用,第四届全国海洋技术学术会议,舟山,May 16-182019 (邀请报告)

43任立勇, “分孔径全偏振相机穆勒矩阵测量方法,第三届全国偏振与椭偏测量研讨会,深圳,Nov 11-132018邀请报告)。

42L. Y. Ren, X. D. Kong, K. L. Ren, and J. Liang, “Long-period fiber gratings via CO2 laser microfabrication,’’ The 7th Conference on Advances in Optoelectronics and Micro/nano-optics (AOM2018), Xi’an (2018). (Invited talk)

41任立勇, “多模光纤计算光学成像技术研究,” 2018中国光学学会全息与光信息处理专委会年会, 厦门,July 26-282018邀请报告)。

40L. Y. Ren, B. Zhuang, G. Z. Zhao, C. F. Xu, Y. Geng, H. Chen, Z. Q. He, B. W. Hu, and Y. L. Li, “Multimode-fiber/scattering-medium computational optical endoscopic imaging based on digital wavefront modulation,” The 10th International Conference of Information Optics and Photonics (CIOP2018), Beijing, Proceedings of SPIE, CIOP100, 109640F-1-109640F-10 (2018). July 8-11 (2018) (Invited talk)

39任立勇, 偏振相机及其水下目标增强成像应用,” 第二届全国海洋光学高峰论坛,西安, June 21-232018邀请报告)。

38L. Y. Ren, X. D. Kong, K. L. Ren, J. Liang, H. J. Ju, Z. F. Bai, and E. S. Qu, “Superior long-period fiber gratings based on CO2 laser direct writing method: fabrication, properties and applications,” 11th Asia-Pacific Laser Symposium (APLS2018), 99-100, Xi’an (2018). (Invited talk)

37任立勇,偏振相机及其应用,” “计算成像技术与应用专题研讨会,西安,Dec 8-11, 2017大会报告)。

36L. Y. Ren, E. S. Qu, J. Liang, H. J. Ju, Z. F. Bai, and W. F. Zhang, “Full-Stokes vector polarimetric camera and its polarimetric detecting and imaging performance,” 1st International Workshop on “Advancement of Polarimetric Observations: Calibration and Improved Aerosol Retrievals” (APOLO2017), Hefei (2017).

35任立勇,偏振光学成像及应用,” 多维多尺度计算摄像学产业及应用创新大会-尺度与立体光场主题, 北京,Oct 13, 2017邀请报告)。

34任立勇, 偏振相机及其成像探测应用,” 2017年全息与光信息处理专业委员会学术年会,昆明,July 28-302017邀请报告)。

33L. Y. Ren, K. L. Ren, X. D. Kong, J. Liang, H. J. Ju, and Z. X. Wu, “Novel long-period fiber gratingsfabrication and sensing applications,” Conference on Lasers and Electro-Optics (CLEO 2017), San Jose (2017).

32L. Y. Ren, W. F. Zhang, J. Liang, H. J. Ju, Z. F. Bai, E. S. Qu, and Z. X. Wu, “An aperture-division full-stokes vector polarimetric camera and its polarimetric imaging applications,” Optics & Photonics International CongressOPIC2017, Yokohama, IP-19PM-2-7 (2017).

31任立勇,基于全偏振态同时探测的实时彩色偏振成像相机研究,第二届全国偏振与椭偏测量研讨会,南宁,Nov 18-21, 2016邀请报告)。

30任立勇,微纳光纤器件与应用技术研究,全国2016年微纳光子学学术研讨会,青岛,Nov 11-132016邀请报告)。

29任立勇,偏振光学相机及其成像探测应用,” 2016年全国光机电技术及系统学术会议,桂林,Oct 14-172016邀请报告)。

28任立勇,偏振光学透雾成像技术,第十届全国光子学学术会议,西安,Sept 18-20, 2016邀请报告)。

27L. Y. Ren, Y. P. Xu, Y. L. Wang, C. J. Ma, X. D. Kong, J. Liang, H. J. Ju, K. L. Ren, X. Lin, and X. J. Li, “Optical microfiber knot resonator (MKR) and its slow-light performance,” The 5th Advances in Optoelectronics and Micro/nano-optics (AOM2015), Hangzhou, Journal of Physics: Conferences Series, 680, 012032 (2016). (Invited talk)

26任立勇,偏振光学成像技术及透雾成像应用研究,” 2014年全国光电技术与系统学术会议,南宁,Oct 24-272014邀请报告)。

25L. Y. Ren, Y. P. Xu, H. J. Ju, C. J. Ma, J. Liang, and Y. L. Wang, “Fiber-based slow light: theory, experiment and application,” The 7th International Photonics and OptoElectronics Meetings (POEM2014), FTh3F.1, Wuhan (2014). (Invited talk)

24L. Y. Ren, J. Liang, Yu Liu, H. J. Ju, M. J. Yun, C. J. Ma, X. Han, X. Lin, and Y. Tomita, “Slow-light in photonic crystal waveguides/fibers: dispersion tailoring schemes for obtaining a high group index with wide band and low GVD,” SPIE Photonics West 2012, San Francisco, Proceedings of SPIE, 8273, 82730L-1-82730L-12 (2012). (Invited talk)

23L. Y. Ren, X. Lin, J. Liang, and C. H. Zhou, Online measuring transmission loss of polymer optical fiber based on nonintrusive light injection and extraction via fiber cladding,” 2012 Beijing International Forum on Science and Technology, Beijing (2012). (Invited talk)

22L. Y. Ren, J. Liang, and M. J. Yun, “Hollow-core photonic bandgap fiber with microfluid-infiltrated air holes for slow-light propagation,” SPIE Optics and Photonics 2012, San Diego, Proceedings of SPIE, 8497, 849710-1-849710-7 (2012).

21L. Y. Ren, C. J. Ma, E. S. Qu, F. Tang, and X. Han, “Analysis and study of static pressure distribution in an optical cable spool using distributed fiber Bragg gratings,” 3rd Asia-Pacific Optical Sensors Conference 2012 (APOS2012), Sydney, Proceedings of SPIE, 8351, 835119-1-835119-8 (2012).

20L. Y. Ren, Y. Tomita, X. Han, C. J. Ma, and Y. Liu, “On the slow-light pulse propagation in optical fibers via stimulated Brillouin scattering,” The 2010 International Symposium on Ultra-fast Phenomena and Terahertz Waves (ISUPTW 2010), 144, Xi’an (2010).

19L. Y. Ren, Y. L. Yang, W. Zhao, and Y. Tomita, “Spatial and temporal evolution of transient stimulated-Brillouin-scattering slow-light pulse in an optical fiber,” SPIE Photonics West 2010, San Francisco, Proceedings of SPIE, 7612, 761207-1-761207-8 (2010).

18L. Y. Ren and Y. Tomita, “SBS-based slow light in optical fibers: optimum design considerations for undistorted slow-light signal propagation in steady-state and transient regimes,” SPIE Photonics West, San Jose, Proceedings of SPIE, 7226, 722605-1-722605-14 (2009). (Invited talk)

17L. Y. Ren and Y. Tomita, “Brillouin slow light of sub-nanosecond pulse in an optical fiber using double broadband pumps,” Japanese Society of Applied Physics, The 56th Spring Meeting, 1245, Tsukuba (2009).

16L. Y. Ren and Y. Tomita, “A new method of spectral SBS gain tailoring for slow light in a single-mode optical fiber,” Japanese Society of Applied Physics, The 55th Spring Meeting, 1230, Tokyo (2008).

15L. Y. Ren and Y. Tomita, “Distortion management of SBS slow light in a single-mode optical fiber by optimization of broadband SBS gain spectrum,” SPIE Photonics Europe, Strasbourg, Photon management III, Proceedings of SPIE, 6994, 69940G-1-69940G-10 (2008).

14L. Y. Ren and Y. Tomita, “Low pulse-broadening SBS slow light in optical fibers using two broadband pump beams,” Japanese Society of Applied Physics, The 69th Autumn Meeting, 1045, Nagoya (2008).

13L. Y. Ren and Y. Tomita, “Distortion management of wide bandwidth SBS slow light in a single-mode optical fiber by using two broadband pump beams,” Optics & Photonics Japan 2007, 586-587, Tokyo (2007).

12L. Y. Ren and Y. Tomita, “Reducing GVD-dependent broadening of SBS slow light in an optical fiber by use of a single cw pump laser,” University of Electro-Communications 21st Century COE Program, International Symposium on Coherent Optical Science, 26, Tokyo (2007).

11L. Y. Ren, H. Y. Wang, Y. N. Zhang, L. L. Wang, and W. Zhao, “Theoretical design and performance evaluation of polarization-maintaining microstructured polymer optical fibers,” the 15th International Conference on Polymer Optical Fiber (ICPOF2006), 251-255 Seoul (2006).

10L. Y. Ren, H. Y. Wang, Y. N. Zhang, L. L. Wang, X. Z. Wang, B. L. Yao, and W. Zhao, “Study progress of polymer optical fibers in XIOPM,” 2006 China-Italy Bilateral Workshop, Xi’an (2006).

9L. Y. Ren, B. L. Yao, N. Menke, L. L. Wang, and Y. F. Kong, “Dynamic characteristics of holographic recording and fixing in doubly doped LiNbO3 crystal,” Trends in Optics and Photonics (TOPS), 99, 398-404 (2005), The 10th International Conference on Photorefractive Effects, Materials and Devices (PR2005), Sanya (2005).

8L. Y. Ren, B. L. Yao, L. L. Wang, Y. F. Kong, N. Menke, Z. W. Ren, and M. Lei, “Real-time non-destructive testing of dynamic holograms in doubly-doped LiNbO3 crystals using phase-conjugate technique,” 7th International Symposium on Optical Storage (ISOS’2005), Zhanjiang, Proceedings of SPIE, 5966, 59660V-1-59660V-4 (2005).

7L. Y. Ren, Y. N. Zhang, X. Z. Wang, Y. L. Li, W. Zhao, and L. L. Wang, “Fabrication and characteristics of Rhodamine-doped microstructured polymer optical fibers,” 14th International Conference on Polymer Optical Fiber (ICPOF2005), Proc 143-146, HongKong (2005).

6L. Y. Ren, B. L. Yao, L. R. Liu, and D. A. Liu, “High fixed diffraction efficiency in LiNbO3:Ce:Cu crystal using optimal switching from holographic recording to fixing,” Advanced Solid-State Photonics (ASSP2005), WB1, Vienna (2005).

5L. R. Liu, L. Y. Ren, D. A. Liu, Z. Luan, and L. Y. Wan, “Optimal switching time for recording and fixing phases during nonvolatile holographic storage in doubly doped LiNbO3 crystals,” SPIE 49th Annual Meeting, Proceedings of SPIE, 5560, 228-234 (2004). (Invited talk)

4L. Y. Ren, L. R. Liu, D. A. Liu, B. L. Yao, N. Menkea, Z. W. Ren, and Y. F. Kong, “Self-enhancement effect and optimal switching scheme for high fixed diffraction efficiency in LiNbO3:Ce:Cu crystals,” Photonics Asia 2004, Beijing, Proceedings of SPIE, 5636, 329-333 (2004).

3L. Y. Ren, L. R. Liu, D. A. Liu, and Z. Luan, “Time-space dynamics of holographic recording and fixing in LiNbO3 :Fe:Mn crystal,” Proceedings of SPIE, 5206, 255-263 (2003).

2L. Y. Ren, D. A. Liu, L. R. Liu, and C. H. Zhou, “Nonvolatile photorefractive holograms in doubly doped LiNbO3: uniform theory and verification,” Proceedings of SPIE, 4803, 53-64 (2002). (Invited talk)

1L. Y. Ren, L. R. Liu, D. A. Liu, and C. H. Zhou, “The optimization of dynamic holographic storage in photochromic LiNbO3:Fe:Mn crystals,” Proceedings of SPIE, 4924, 153-161 (2002).

 

研究生培养及毕业去向:已培养博士8人、硕士11人;在读博士研究生5人、硕士4人。

82019年,解青坤(博),航天504

72019年,孔旭东(博),中山联合光电科技股份有限公司

6、2017年,梁  健(博),中科院西安光机所,亚利桑那大学博士后

5、2017年,任凯利(博),西安邮电大学

4、2017年,张文飞(博),山东理工大学

3、2015年,徐益平(博),长江大学
2、2015年,马成举(博),西安石油大学
1、2014年,林  霄(博),中国电子科技集团公司

研究生获奖:

112019年,解青坤(博),中科院“朱李月华”优秀博士生奖学金。

102018年,孔旭东(博),大恒光学奖学金特别奖

9、2017年,梁  健(博),中科院“朱李月华”优秀博士生奖学金、中科院优博获得者

8、2017年,任凯利(博),研究生国家奖学金

7、2015年,徐益平(博),中科院院长优秀奖
6、2015年,张文飞(博),中科院大学三好学生荣誉称号

5、2015年,李雪娇(硕),中科院大学三好学生荣誉称号

4、2014年,林  霄(博),研究生国家奖学金

3、2014年,徐益平(博),中科院“朱李月华”优秀博士生奖学金

2、2013年,陈娜娜(硕),研究生国家奖学金

1、2013年,林 霄(博),中科院“朱李月华”优秀博士生奖学金

点击量:

版权所有:陕西师范大学物理学与信息技术学院 | 地址:陕西师范大学长安校区致知楼 | 邮编:710119 | 电话:029-81530750 | Email:wlbg@snnu.edu.cn        
       
       copyright © 2013 wuli.snnu.edu.cn Inc. All right Reserved.